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Synopsis 

The present investigation deals with amorphous polystyrene crazing behavior a t  both the molecular 
and macroscopic levels. The nature of the amorphous state is considered from the perspective of 
statistical fluctuation theory, especially when a mechanical force field is acting on the polymer. Past 
crazing studies have rather fully described the phenomenological behavior. However, these studies 
did not generate a fundamental molecular explanation of crazing. We now suggest a molecular 
approach based on the density and density distribution of physical entanglements between polymer 
chains as a function of molecular weight. This approach permits the molecular entanglement concept 
and the phenomenological parameters such as stresses and temperatures associated with crazing 
to be related through the use of fluctuation theory. Two fundamental results are obtained and 
specifically demonstrated for polystyrene. First, an accurate theoretical prediction of the volume 
associated with microvoid formation is explicitly determined. Second, the dependence of the number 
of crazes on molecular weight is also shown. 

INTRODUCTION 

The idea that a well-annealed, rigid amorphous polymer is a truly homogenous 
body capable of being treated solely with continuum concepts is discordant with 
known observations. Rigid amorphous polymers undergo crazing1.2 and 
shear-banding3 processes which are indeed manifestations of a nonuniform 
system subjected to one or more force fields. There is a fundamental question: 
a t  what size level does the system lose its homogeneous character? 

Examination of the nature of the amorphous state of a polymer can be carried 
out in analogy to the treatment given to other systems displaying small fluctu- 
ations in their behavior. Outstandingly successful examples resulting from this 
treatment include the thermodynamic understanding of the polymer concen- 
tration dependence in light ~cat ter ing,~ transport of molecules by Brownian 
diffusion,516 and the Maxwell velocity distribution of gas  molecule^.^ To apply 
similar reasoning to amorphous polymers requires the simultaneous use of ideas 
of Newtonian mechanics and the physics of statistical fluctuation theory. 
Moreover, just as in the cases of the above-mentioned successful examples, such 
a treatment produces a greatly amplified understanding of the process when 
careful consideration is given to the molecular character of the system under 
observation. 

The point of this paper is that when statistical fluctuation theory is applied 
to amorphous polymers, two fundamental expressions are obtained. The first 
one quantitatively relates the stress, temperature, and the volume associated 
with microvoid formation in the craze. The second one estimates the relation 
between the number of crazes generated and the molecular weight of the polymer. 
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Both developments are based on the physical entanglement of polymer chains, 
how entanglements are distributed, and how they depend on polymer molecular 
weight. To develop the above results, crazing is first briefly reviewed, followed 
by a model for amorphous entangled chains, and then the underlying ideas of 
statistical fluctuation theory are applied to give the above-mentioned results: 

(JC 
w, = erf ( [ Z ~ T O ( B / V ) ] ~ / ~  

and 

The accuracy of these results is demonstrated by comparison to experimental 
results for polystyrene obtained in earlier studies by Fellers and Kees and by 
LeGrand, Kambour, and Haaf.g 
Symbols used throughout this paper are defined as follows: 

A =  
B =  
c1= 
k =  

M =  
M ,  = 
M e  = 
Rn = 
mw = 

x, = x; = 

N ,  = 

P =  
T =  

To = 
U =  
V =  
vo = 
W =  

A =  
A2 = 

Helmholtz function 
bulk modulus 
probability normalizing constant 
Boltzmann constant 
molecular weight 
molecular weight between chemical crosslinks 
molecular weight between physical entanglements 
number average molecular weight 
weight-average molecular weight 
Avagadro’s number 
average number of physical entanglements per unit volume 
average number of physical entanglements per unit volume counted only 

pressure 
temperature 
equilibrium temperature 
internal energy 
volume 
equilibrium volume 
work 
mean square value of the fluctuation around X 
arbitrary parameter used to characterize system fluctuations 

after the network is established 

p = material density 
CT = stress 

(J, = stress to initiate crazing 
6 = distribution function 
w = probability 

w, = crazing probability 
WM = probability of crazing that depends on molecular weight 
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CRAZING PHENOMENON 
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The extensive phenomenological information about crazing is roughly sepa- 
rated for the current purpose into two categories. Some observations speak more 
directly to craze initiation, others to a time later in the process such as craze 
propagation and an overall size. It will become clear that craze initiation is the 
more important category here. 

Observations important to craze initiation include the fact that a minimum 
tensile stress component must be reached before crazing can start.lJO Fur- 
thermore, the magnitude of this stress depends on deformation rate"-13 and 
temperature.1°J3 Another interesting observation is that above twice the en- 
tanglement molecular weight, the crazing stress is independent of molecular 
weight.8 Below twice the entanglement molecular weight, crazes essentially do 
not f ~ r m . ~ J ~  Another observation is that the number of crazes initiated increases 
as the molecular weight increa~es .~J~  Lastly, a measurement of special signifi- 
cance to the arguments made here are the reports about the craze being a col- 
lection of spheroidal or irregularly shaped voids surrounded by polymeric ma- 
terial. The voids were reported for several polymers, including polystyrene, to 
be 80-100 A in radius and correspond to a volume of about 2 X lo6 A3.9 

The view propounded here is that crazing traditionally has been characterized 
by macroscopic parameters such as temperature, strain rate, and stress; however, 
an additional set of molecular parameters should be used but have been largely 
overlooked. This view requires a molecular-level concept related to amorphous 
polymer behavior. The concept proposed here is that of physically entangled 
chains, the spatial distribution of entanglements, and how these depend on 
molecular weight. 

It is vital to the concerns of this paper to explore the above concept in terms 
of a physical model for entanglements in an amorphous polymer. The consid- 
erations made here draw heavily on the reasoning used to discuss the chemical 
crosslink density16 of elastomeric polymers. The analogy between Me and M, 
is of basic importance. 

PHYSICAL ENTANGLEMENTS IN A LINEAR AMORPHOUS 
POLYMER 

All the reasoning used here is based on the physical reality of a chain entan- 
glement. Figure 1 depicts several key features. The notions of interest include 
the molecular weight between entanglements, the part of the chain extending 
from the entanglement to a chain end, the number of chain entanglements per 
unit volume, and how this entanglement density varies with molecular weight 
and molecular weight distribution. 

It is convenient to begin with the special case of infinite molecular weight. 
This simplifies the treatment in that the effects of chain ends and molecular 
weight distribution are eliminated. In this case the average entanglement 
density is given by 

N e  = PNaIMe (3) 

Now for finite molecular weight, the amount of chain between the chain end 
and an entanglement point lowers the entanglement density. Each chain end 
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c 9 designates a ph sic01 entanglement with 
with a value of be 
designates a chain end issuing from the 
last entanglement with a value of me/2 

Fig. 1. Physical representation of a chain entangled network: physical entanglement with a value 
of XTe (-1; chain end issuing from the last entanglement with a value of M e / 2  (e). 
takes Me/2 of a polymer chain and must be satisfied before an entanglement can 
form. Also, this must occur twice per chain for a linear polymer. Thus eq. (3) 
becomes 

Now a consequence of some significance should be pointed out. Equation (4) 
gives the average number of entanglements per unit volume. This must be 
distinguished from the statistical network of entanglements, which is not es- 
tablished until M = 2 Me. Thus to count only those entanglements which en- 
hance and tend to complete the basic network, we write 

Consideration can also be given to how molecular weight distribution effects 
the entanglement density. For this case 

and 

J m $ d M = l  

where C#J is the distribution function. Now 

Thus 

(7) 
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Figure 2 graphically depicts how NE varies according to equation (9) when Me 
= 35,000 g/mol,l7 g w / H n  = 2, N,, = 6.02 X 1023 mol-1, p = 1.05 g/cm3,18 and 
using a volume of 1.4 X lo6 A3. 
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A MACRO- TO MICRO-MODEL COMPARISON OF 
AMORPHOUS POLYMERS 

The crazing microdeformation process speaks strongly to two notions. First, 
it sets a limit as to how completely the understanding of amorphous polymer 
deformation can be achieved solely from a continuum-based analysis. Second, 
it suggests a modified way of thinking about amorphous polymers. The generally 
used macroscopic material continuity view is still held here with the added 
modification that the total material volume be subdivided into a large number 
of contiguous microvolume elements (Fig. 3). 

Such a model allows the material to still be treated with continuum concepts 
as long as the material response is consistent with the notion of whole-body ho- 
mogeneity. When this criterion can no longer be met as is the case for crazing, 

m2 I O - ~  
Fig. 2. Graphical presentation of eq. (S), the average number of entanglements in 1.4 X lo6 A3 

contributing to the perfection of network development as the molecular weight increases above 2Me 
and MJM, = 2. 
- -  

fMACROVOLUME OF THE ENTIRE SAMPLE 

(SAMPLE SUBDIVIDED INTO MICROVOLUME 

Fig. 3. Subdivision of macrovolume to microvolume elements, where the microvolume element 
is the volume necessary to guarantee the Occurrence of a fluctuation that will lead to craze develop- 
ment. 

ELEMENTS 
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this modified view allows the behavior to be analyzed on the basis of the char- 
acteristics of the microvolume elements. Furthermore, if these elements defy 
singular and uniform description, then statistical distribution representation 
may be used. This is especially pertinent when an imposed stress field can 
supply the energy to drive an entropy change within the microvolume element 
leading to a fluctuation of critical magnitude. 

Two challenges confront the model proposed above. One of them is that it 
should be possible to relate the known physical parameters of amorphous poly- 
styrene to the model. Two such parameters can be quickly dealt with. Since 
the craze microvoid volume is 2 4  X lo6 A3 and it is the smallest dimensional 
entity uniquely associated with crazing, it can suggest the approximate volume 
of the elements in Figure 3. The other physical concept is the number of en- 
tanglements associated with this volume element. For polystyrene this is around 
35 at  a maximum. As this maximum would apply only to an infinite-molecu- 
lar-weight polymer, any chain ends and packing imperfections would lower this 
number. 

The second challenge the model faces is whether or not its validity is upheld 
and extended by existing fundamental theory. In the following section this is 
accomplished by the use of statistical fluctuation theory. This approach yields 
mathematical expressions which quantitatively relate the phenomenological 
parameters of crazing. Furthermore, the underlying significance of the molecular 
features of the amorphous state are clearly demonstrated and reconcile any 
previously held conflicting interpretation between continuum and statistical 
theories. 

FLUCTUATION THEORY APPLIED TO CRAZING 

For the purpose of deriving a specific expression to describe crazing, equation 
(10) is assumed to be a general and valid probability expression for fluctuations 
occurring in a system depicted in figure 3. The foundation of this theoretical 
expression lies in the Boltzmann probability arguments and the Gaussian dis- 
tribution function (a discussion of the general framework of this theory being 
available elsewherelg): 

In the present case, AW(A) is interpreted as the mechanical energy necessary 
to pay for an entropy fluctuation that opposes the direction expected on a 
spontaneous pathway. 

One specific objective here is to express the work function AW(A) for an 
amorphous polymer. One of the customary ways is to employ the internal energy 
function, so that 

(11) 

Since the fluctuation is now being considered around the equilibrium position 
of V, i.e., VO, AU(V) can be expanded by a Taylor series around VO: 

AW(A) = U( V) d V  = d A  + p dVo 
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The first two terms represent fluctuation about a symmetrical equilibrium po- 
sition and cancel each other. 
they are small. Thus 

In this expression the term 

Terms higher than second order are neglected, since 

= U ( V )  d V =  ($)vo ( V  - VOl2 

(%Ivo = - (%Lo 
Now the term - (bplbV)v ,  is of special interest in this case, where the appli- 

cation is to amorphous polymers. One sees that 
B (%)vo = -v 

when it is realized that 
6V 6 p = B -  
V 

Here the mechanical concepts of modulus, stress, and strain are required, where 
6p is the infinitesimal pressure or stress acting on a volume element, 6V/V is the 
infinitesimal strain of a volume element, and B is the modulus of proportionality 
for the above stress-strain relationship. 

Now the general form of the Boltzmann expression for probability involving 
fluctuations may also be writtenlg as 

dw = ( 2 ~ A 2 ) - l / ~  exp (- d X 

where A2 is the mean-square value of the fluctuation around X (in this case the 
volume V ) .  Furthermore, 

A2 = kTo/U” (A,) (18) 

So in the present application, 

Substituting this for A2 in eq. (17) gives 
2 ~ k T o V  -‘I2 

d w = (  B ) 
In the present application, concern with the mechanical situation is still the 

primary issue. Thus the notion of stress associated with volume fluctuation 
becomes important. From the B and V terms already introduced, one can 
write 

dV d a = B -  
V 

or 
AV B(V - Vo) a = B - =  
V V 



2322 FELLERS AND HUANG 

where CT physically represents an energy density input to the system and drives 
the volume fluctuations. 

The Boltzmann expression as given in eq. 20 can now be changed in form by 
making the substitution 

d V =  V d a l B  (23) 

so that 

d w = (  2 ~ k  ToV ) exp(- 

and bringing the VlB from the differential to the pre-exponental term gives 

A substitution can also be made for the (V  - VO) term on the basis of eq. ( 2 2 )  so 
that 

( V  - V0)2 = (Va/B)2 (26) 

and this gives for the case of crazing in a tensile stress field 

d w , = (  2 a k T d  ) -1/2 e x p ( - g ) d a  

Integration over stress in such as way as to guarantee craze formation, that is, 
the probability equals 1,  leads to 

Using standard mathematical tables for the error function yields 

= 3.87 ' TC  

( 2 k T d I V ) 1 / 2  
All the above quantities except V have been measured experimentally, so if one 
takes a, = 3.1 X 107 N/m2 (Ref. 8), B = 2.8 X lo9 N/m2 (Ref. 20), h = 1.38 X 
JIOK, and TO = 378°K (i.e. the lowest temperature at  which polystyrene could 
have been able to achieve equilibrium), we have, solving for V ,  

v = 4.5 x 105 A 3  

THE MEANING OF V 
The V just calculated is the average size of the volume element which guar- 

antees with a probability of 1 that a fluctuation associated with the crazing 
process will occur in it. Note that its value lies under the 2 X lo6 A3 experi- 
mentally reported for the volume of a microvoid in a crazed structure! 

This must mean that the stress acts in such a way as to open a void in this 
volume element. Furthermore, the void grows until it  just gets beyond the di- 
mensions of this element. Presumably, the large amount of strain (50-10W0) 
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in the local craze region has resulted in a strain-hardened material that resists 
further expansion of the void. 

There is yet one further possible application of fluctuation theory to the crazing 
process. This is developed in the next section. 

CRAZE FREQUENCY AND TEXTURE 

A striking molecular-based feature of crazing observed only qualitatively so 
far was that the number of crazes formed in a given amount of polystyrene de- 
pended on its molecular ~ e i g h t . ~ J ~  As molecular weight increased, so did the 
number of crazes. Furthermore, these crazes changed from short, jagged ones 
at  just above 2 Me to rather long, fine-textured ones at higher molecular weights. 
This situation can also be treated with the principles of fluctuation theory to give 
further support and insight to the molecular model proposals given in the pre- 
vious arguments. 

Again by resorting to the model in Figure 3, a molecular view of craze initiation 
can be achieved. The microvoids that form in the crazing process can be imag- 
ined to start in a volume element containing no entanglements. It has been 
experimentally determinedg.21 that a craze is a series of microvoids surrounded 
by polymeric material. The molecular view used here is that while the origin 
of the microvoid is associated with a volume element containing no entangle- 
ments, crack growth does not occur from the microvoid because the immediately 
surrounding volume elements do contain entanglements. Hence the void de- 
velopment ceases in that region but occurs in other regions of similar character. 
Apparently, the regions most favorably disposed toward further microvoid for- 
mation are those positioned adjacent to an existing microvoid and projected 
normally to the applied stress direction. This would rationalize the fact that 
crazes always propagate perpendicularly to the tensile stress. 

Since crazing of polystyrene essentially does not occur below 2 Me, it is rea- 
sonable to say that here cavitation is initiated with the growth of a hole to become 
a macrocrack. This is possible since no effective network of entanglements is 
present to impede microvoid to macrocrack development. In contradistinction 
then, crazing may be seen as a process of starting and stopping many holes. 

To evaluate the situation of interest, it is necessary to determine the probability 
of finding a region in the amorphous polymer where a volume element with no 
entanglements exists but where the surrounding elements do contain entan- 
glements, and they can be reasonably represented by the average entanglement 
density. Not only must this probability be evaluated, but it must be done for 
a system of specified molecular weight distribution. Furthermore, if this 
probability is to be applied to the case at  hand, then it must be determined how 
this probability varies as the molecular weight of the sample increases. 

This probability appears to be a product. Thus we seek a statement with the 
following form: 

WM = probability of finding V (no entanglements) 
(N:)M 

To get the form of the required statement, we imagine the V (no entanglements) 
will be composed of polystyrene molecules with a molecular weight of less than 
2 Me. Furthermore, we conceive of XV (entanglements) to be the number of 

surrounded by x V (entanglements) 
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nearest-neighbor volume elements containing a representative number of en- 
tanglements. These polystyrene molecules will eventually arrest the growth 
of the void and thus have their molecular _ _  weight above 2 Me. Schematically, 
we represent this in Figure 4, with Mw/Mn = 2 and where region I contains the 
polymer molecules incapable of significant entanglement network development. 
Region I1 then contains those polystyrene molecules which can and do develop 
an entanglement network that effectively stops the microvoid expansion. 

To develop appropriate forms we begin with a statement of finding an element 
of no entanglements surrounded by entangled neighbors. Thus for a distributed 
molecular weight. 

Now the extent to which a polystyrene sample has any of its molecular weight 
distribution overlap with the distribution function below 2 Me can be expressed 

The form of the overall probability expression we seek is then given by 

L 

REGION I REGION II 

Fig. 4. Molecular weight distribution curve showing probabilities of finding whether a chain can 
participate in a network. 
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Figure 5 shows how this probability changes with molecular weight. In fact, the 
behavior is in accord with the qualitatively observed trend that the number of 
crazes increased between M,, of 70,000 and 150,000.s Also note that the theory 
predicts that for the higher molecular weights, the craze density should remain 
almost constant. This would be a further experimental point to investigate. 

CONCLUSIONS 

The general concepts of the fluctuation theory was specifically applied to the 
crazing of amorphous polystyrene. In doing so, two equations of fundamental 
significance to crazing were derived. Equation (l), 

gives the volume necessary to ensure finding a site for microvoid formation to 
occur, cast in the energy-related parameters of stress and temperature, [eq. 
(211, 

shows how the number of crazes formed per unit volume of the sample is con- 
trolled by the molecular weight. As is also the case for fluctuation theory applied 
to other phenomena, an enhanced understanding of crazing is gained by con- 
sidering the molecular processes involved. 

When the parameters of the above equations are combined with known mo- 
lecular weight parameters, a model depicting the nature of the amorphous state 
is achieved. The model has statistical character and shows how variations of 
molecular weight and chain entanglements control the crazing phenomenon. If 
a network of entangled chains cannot be established, crazing essentially will not 
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Fig. 5. Graphical presentation of eq. (2), the probability of craze formation as a function of mo- 
lecular weight parameters. 
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occur. As a basic network is perfected by increasing the polymer molecular 
weight, crazing is actually promoted up to a limit. 

There also is ariinteresting suggestion made by eq. (1). Since the crazing stress 
is a function of tempera t~re , '~J~  a further view can be examined. It is known 
that uc - 0 as Tht - Tg According to eq. (l), this is expected, since the volume 
element necessary to ensure finding a craze initiation site increases as the crazing 
stress decreases. Thus near the glass transition temperature crazes should not 
be observed, as indeed they are not. This suggests that the number of crazes 
formed per unit volume is then the inverse of the temperature at  which stress 
is applied to form a craze. For those crazes that do form, however, the microvoid 
volume should increase as gC decreases, as predicted by eq. (1). Thus a key ex- 
periment is to determine the number density of crazes formed at various stresses 
and to determine the associated microvoid volume. This key experiment would 
be another important step toward establishing the validity of both the applied 
theory and its associated model of the amorphous state. Indeed, in a related 
study of the crazing of rubber modified polystyrene just reported,22 the results 
closely parallel the above predictions of this paper for homopolystyrene. 

The partial support of the National Science Foundation under Grant No. DMR 75-02958 is 
gratefully acknowledged. 
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